OBJECT ORIENTED
PROGRAMMING USING C++

Overloading, Overriding

POLYMORPHISM
I I

poly morphos
| |
many forms

» Overloading — single method name having several alternative
Implementations.

» Overriding — child class provides alternative implementation for parent
class method.

» Polymorphic variable — a variable that is declared as one type but holds
a value of a different type.

Polymorphic Variable

Example :

« Java — all variables can be polymorphic.
« C++ — only pointers and references can be polymorphic.

Method Binding

» Determining the method to execute in response to a message.
» Binding can be accomplished either statically or dynamically.

Static Binding —

 Also known as “Early Binding”.

* Resolved at compile time.

* Resolution based on static type of the object(s).

Dynamic Binding —

 Also known as “Late Binding”.

* Resolved at run-time.

» Resolution based on the dynamic type of the object(s).
» Uses method dispatch table or Virtual function table.

Method Binding Example

Class Shape {
public:
virtual void Draw() { cout << “Shape Draw!” << endl; }

}

Class Triangle : public Shape {
public:
void Draw() { cout << “Triangle Draw!” << endl; }

}

Shape * sptr = new Triangle();
Sptr->Draw(); // Triangle Draw!

Overloading

 Overloading Based on Scopes

 Overloading based on Type Signatures

Overloading

Overloading Based on Scopes

e same method name in different scopes.

* the scopes cannot overlap.

* No restriction on semantic similarity.

» NO restriction on type signatures.

» Resolution of overloaded names based on class of receiver.

Example

Overloading

Overloading Based on Type Signatures

« same method name with different implementations having different type
signatures.

» Resolution of overloaded names is based on type signatures.
» Occurs in object-oriented languages (C++, Java, C#, Delphi Pascal)
» Occurs in imperative languages (Ada), and many functional languages.

» C++ allows methods as well as operators to be overloaded.
» Java does not allow operators to be overloaded.

Overloading and Method Binding

Resolution of Overloaded Methods
* Method binding at compile time.

» Based on static types of argument values
* Methods cannot be overloaded based on differences in their return types
alone.

Overloading Example

Overloading can be used to extend library functions and operators so they
can work with user-defined data types.

Class Fraction
private:
int t, b;

public:
Fraction (int num, int denum) { €t = num; b = denum; }
int numerator() { return t; }
int denominator() { return b; }

}

ostream & operator << (ostream & destination, Fraction & source)

{

destination << source.numerator() << “/” << source.denominator;
return destination;

}

Some Assoclated Mechanisms

» Coercion and Conversion
* Redefinition
» Polyadicity

* Multi-Methods

Coercion and Conversion

» Used when actual arguments of a method do not match the formal
parameter specifications, but can be converted into a form that will match

e Coercion - implicitly implemented
Example floatvar = intvar;

« Conversion - explicitly requested by the programmer
Example floatvar = (double) intvar;

Substitution as Conversion

» Used when there is parent-child relationship between formal and actual
parameters of a method

Dessert voild order (Dessert d, Cake c);
void order (Pie p, Dessert d);
void order (ApplePie a, Cake c);

Pie Cake
ApplePie ChocolateCake

order (@Dessert, aCake);

order (anApplePie, aDessert)

order (a@aDessert, aDessert); // 1llegal
order (anApplePie, aChocolateCake)

order (aPie, aCake);

Substitution as Conversion

Resolution rules (when substitution is used as conversion in overloaded
methods)

e If there is an exact match, execute that method.

* If there are more than one matching methods, execute the method that
has the most specific formal parameters.

o If there are two or more methods that are equally applicable, the method
Invocation is ambiguous, so generate compiler error.

* If there is no matching method, generate compiler error.

Conversion

Conversion operators in C++
(these are the user supplied conversions)

« One-argument constructor : to convert from argument type to class type.

» Operator with type name as its name : to convert class type to named
type.

Conversion

Rules for Resolution of Overloaded methods
(taking into account all of the various conversion mechanisms)

» execute method whose formal parameters are an exact match for the
actual parameters

* match using standard type promotions (e.g. integer to float)
* match using standard substitution (e.g. child types as parent types)

e match using user-supplied conversions (e.g. one-argument constructor,
type name operator)

* if no match found, or more than one method matches, generate compiler
error

Redefinition

When a child class defines a method with the same name as a method In
the parent class but with a different type signature.

How is it different from overrriding?
Different type signature in Child class.

Redefinition

Two approaches to resolution
Merge model
- used by Java, C#

* method implementations found in all currently active scopes are merged into one
list and the closest match from this list is executed.

* in the example, parent class method wil be executed.

Hierarchical model

e used by C++

» each currently active scope is examined in turn to find the closest matching
method

* in the example, compilation error in Hierarchical model

Delphi Pascal - can choose which model is used
merge model - if overload modifier is used with child class method.
Hierarchical model - otherwise.

Polyadicity
Polyadic method - method that can take a variable number of arguments.

printf(*“%s”, strvar);
printf(*“%s, %d”, strvar, intvar);

« Easy to use, difficult to implement
» printf in C and C++; writeln in Pascal; + operator in CLOS

#include <stdarg.h>
int sum (int argcent, .) // C++ uses a data structure called
{ // variable argument list
va_list ap;
int result = 0O;
va_start(ap, argcnt);
while (argcent > 0) {
result += va arg(ap, int);
argcnt--;
+
va_end(ap);
return result;

Optional Parameters

Another technigue for writing Polyadic methods.
* Provide default values for some parameters.

« If values for these parameters are provided then use them, else use the
default values.

* Found in C++ and Delphi Pascal

same as

Multi-Methods

Multi-Methods
e combines the concepts of overloading and overriding.

» Method resolution based on the types of all arguments and not just the
type of the receiver.

 Resolved at runtime.

The classes integer and real are derived from the parent class number.

Multi-Methods

Double dispatch
e a message can be used to determine the type of a receiver.

» To determine the types of two values, the same message Is sent twice,
using each value as receiver in turn.

* Then execute the appropriate method.

Overloading Based on Values

Overloading based on values

» overload a method based on argument values and not just types.
e Occurs only in Lisp-based languages - CLOS, Dylan.

» High cost of method selection algorithm.

Example

The second method will be executed if the first argument is the constant
value zero, otherwise the first method will be executed.

Overriding

A method in child class overrides a method in parent class if they have the
same name and type signature.

Overriding

 classes in which methods are defined must be in a parent-child
relationship.

* Type signatures must match.
 Dynamic binding of messages.
 Runtime mechanism based on the dynamic type of the receiver.

» Contributes to code sharing (non-overriding classes share same
method).

Overriding Notation

C++

class Parent {
public:
virtual Int test (int a) { .. }

+
class Child : public Parent {
public:
int test (int a) { .. }
+
C#

class Parent {
public virtual iInt test (int a) { .. }

+
class Child : Parent {

public override iInt test (int a) { .. }
+

Overriding Notation

Java

class Parent {
public iInt test (int a) { .. }
+
class Child extends Parent {
public iInt test (int a) { .. }

}

Object Pascal

type
Parent = object
function test(int) : i1nteger;
end;
Child = object (Parent)
function test(int) : i1Integer; override;
end;

Overriding

Overriding as Replacement
 child class method totally overwrites parent class method.

 Parent class method not executed at all.

 Smalltalk, C++.

Overriding as Refinement
 Parent class method executed within child class method.

* Behavior of parent class method is preserved and augmented.

 Simula, Beta

Constructors always use the refinement semantics of overriding.

Replacement in SmallTalk

In support of code reuse

Director

Person
GenerateReport
Manager Trainee
GenerateReport
Code Reuse ----------==-—---m-m-—- > o >

Overriden method
as replacement

Replacement in SmallTalk

In support of code optimization

Boolean
& right

A

True

False

& right & right

Refinement in Beta

» Always code from parent class is executed first.

 When ‘inner’ statement is encountered, code from child class is
executed.

 |f parent class has no subclass, then ‘inner’ statement does nothing.

Example

Simulation of Refinement using Replacement

C++

void Parent::test () {

cout << ““in parent \n” ;

}
void Child::test () {

Parent: :test();

cout << “i1n child \n”’;

}

Java

class Parent {

Object Pascal

procedure Parent.test ();

begin

writeIn(*“in parent™);
end;
procedure Child.test ();
begin

inherited test (;
writeIn(““in child”);
end;

void test () {System.out.printIn(“in parent”);}

}

class Child extends Parent {

void test) {
super.test();

System.out.printIn(*“in child”); }

Refinement Vs Replacement

Refinement
» Conceptually very elegant mechanism
» Preserves the behavior of parent.
(impossible to write a subclass that is not also a subtype)
« Cannot simulate replacement using refinement.

Replacement

* No guarantee that behavior of parent will be preserved.
(it is possible to write a subclass that is not also a subtype).

e Can be used to support code reuse and code optimization

« Can simulate refinement using replacement.

Wrappers in CLOS

This mechanism can be used to simulate refinement.

A subclass overrides parent method and specifies a wrapping method.
Wrapping method can be

* ‘before’ method

 ‘after’ method

e ‘around’ method

(defclass parent O O)
(defclass child (parent))
(defmethod test ((x parent)) (print “test parent™))
(defmethod atest :after ((x child)) (print “atest child”))
(defmethod btest :before ((x child)) (print “btest child”))
(defmethod rtest :around ((x child))

(list “rtest chld before” (call-next-method) “rtest chld after™))

(defvar aChild (make-instance “child))

(atest aChild) “atest child” “test parent”
(atest aChild) “test parent” “btest child”
(atest aChild) “rtest chld before” “test parent” “rtest chld after”

Deferred Methods

» Defined but not implemented in parent class.
» Also known as abstract method (Java) and pure virtual method (C++)
» Associates an activity with an abstraction at a higher level than it

actually is.

Shape

virtual Draw() =0

Circle

Draw()

Triangle Square

Draw() Draw()

» Used to avoid compilation error in statically typed languages.

Deferred Method Example

C++

virtual void Draw () = O;

Java
abstract
abstract

Smalltalk
Draw

N selT subclassResponsibility

(Smalltalk does implement the deferred method in parent class but when
iInvoked will raise an error)

Shadowing

Child class implementation shadows the parent class implementation of a method.

» As example in C++, when overridden methods are not declared with ‘virtual’
keyword.

* Resolution is at compile time based on static type of the receiver.

Overriding, Shadowing and Redefinition

Overriding

« Same type signature and method name in both parent and child
classes.

* Method declared with language dependent keywords indicating
overriding.

Shadowing

« Same type signature and method name in both parent and child
classes.

» Method not declared with language dependent keywords indicating
overriding.

Redefinition
 Same method name in both parent and child classes.
» Type signature in child class different from that in parent class.

Covariance and Contravariance

» An overridden method in child class has a different type signature than
that in the parent class.

 Difference in type signature is in moving up or down the type hierarchy.

Parent
Test(Shape covar, Square

contravar)

Child
Test(Square covar, Shape

contravar)

Covariance and Contravariance

« Covariant change - when the type moves down the type hierarchy in the
same direction as the child class.

» Contravariant change - when the type moves in the direction opposite to
the direction of subclassing.

Covariance and Contravariance

« Covariant change in return type

» Contravariant change in return type

« C++ allows covariant change in return type.
 Eiffel, Sather allows both covariant and contravariant overriding
* Most other languages employ novariance

Java

And Finally...

 ‘final’ keyword applied to functions prohibits overriding.
 ‘final’ keyword applied to classes prohibits subclassing.

C#

» ‘sealed’ keyword applied to classes prohibits subclassing.
» ‘sealed’ keyword cannot be applied to individual functions.

