
OBJECT ORIENTED
PROGRAMMING USING C++

1

Overloading, Overriding

POLYMORPHISM
| |

poly morphos
| |

many forms

• Overloading – single method name having several alternative
implementations.

• Overriding – child class provides alternative implementation for parent
class method.

• Polymorphic variable – a variable that is declared as one type but holds
a value of a different type.

Polymorphic Variable
Example :
Class Shape {
…
}

Class Triangle extends Shape {
…
}
Shape s = new Triangle;

• Java – all variables can be polymorphic.
• C++ – only pointers and references can be polymorphic.

Method Binding
• Determining the method to execute in response to a message.
• Binding can be accomplished either statically or dynamically.

Static Binding –
• Also known as “Early Binding”.
• Resolved at compile time.
• Resolution based on static type of the object(s).

Dynamic Binding –
• Also known as “Late Binding”.
• Resolved at run-time.
• Resolution based on the dynamic type of the object(s).
• Uses method dispatch table or Virtual function table.

Method Binding Example
Class Shape {
public:
virtual void Draw() { cout << “Shape Draw!” << endl; }
}

Class Triangle : public Shape {
public:
void Draw() { cout << “Triangle Draw!” << endl; }
}

Shape * sptr = new Triangle();
Sptr->Draw(); // Triangle Draw!

Overloading

• Overloading Based on Scopes

• Overloading based on Type Signatures

Overloading
Overloading Based on Scopes
• same method name in different scopes.
• the scopes cannot overlap.
• No restriction on semantic similarity.
• No restriction on type signatures.
• Resolution of overloaded names based on class of receiver.

Example
Class SomeCards {

Draw() {…} // Paint the face of the card
}

Class SomeGame {
Draw() {…} // Remove a card from the deck of cards

}

Overloading
Overloading Based on Type Signatures
• same method name with different implementations having different type
signatures.
• Resolution of overloaded names is based on type signatures.
• Occurs in object-oriented languages (C++, Java, C#, Delphi Pascal)
• Occurs in imperative languages (Ada), and many functional languages.

Class Example {
Add(int a) { return a; }
Add(int a, int b) { return a + b; }
Add(int a, int b, int c) { return a + b + c; }

}

• C++ allows methods as well as operators to be overloaded.
• Java does not allow operators to be overloaded.

Overloading and Method Binding
Resolution of Overloaded Methods
• Method binding at compile time.
• Based on static types of argument values
• Methods cannot be overloaded based on differences in their return types
alone.

Class SomeParent {…}
Class SomeChild : public SomeParent {…}

void Test (SomeParent *sp) { cout << “In Parent”; }
void Test (SomeChild *sc) { cout << “In Child”;}
SomeParent *value = new SomeChild();

Test(value); // “In Parent”
}

Overloading Example
Overloading can be used to extend library functions and operators so they
can work with user-defined data types.

Class Fraction
private:
int t, b;

public:
Fraction (int num, int denum) { t = num; b = denum; }
int numerator() { return t; }
int denominator() { return b; }

}

ostream & operator << (ostream & destination, Fraction & source)
{
destination << source.numerator() << “/” << source.denominator;
return destination;

}

Some Associated Mechanisms

• Coercion and Conversion

• Redefinition

• Polyadicity

• Multi-Methods

Coercion and Conversion

• Used when actual arguments of a method do not match the formal
parameter specifications, but can be converted into a form that will match

• Coercion - implicitly implemented
Example floatvar = intvar;

• Conversion - explicitly requested by the programmer
Example floatvar = (double) intvar;

Substitution as Conversion
• Used when there is parent-child relationship between formal and actual
parameters of a method

Dessert void order (Dessert d, Cake c);
void order (Pie p, Dessert d);
void order (ApplePie a, Cake c);

Pie Cake

ApplePie ChocolateCake

order (aDessert, aCake);
order (anApplePie, aDessert)
order (aDessert, aDessert); // illegal
order (anApplePie, aChocolateCake)
order (aPie, aCake);

Substitution as Conversion

Resolution rules (when substitution is used as conversion in overloaded
methods)

• If there is an exact match, execute that method.
• If there are more than one matching methods, execute the method that
has the most specific formal parameters.
• If there are two or more methods that are equally applicable, the method
invocation is ambiguous, so generate compiler error.
• If there is no matching method, generate compiler error.

Conversion
Conversion operators in C++
(these are the user supplied conversions)

• One-argument constructor : to convert from argument type to class type.
Fraction (int value)
{

t = value; b = 1; // Converts int into Fraction
}

• Operator with type name as its name : to convert class type to named
type.

operator double ()
{ // Converts Fraction into double

return numerator() / (double) denominator;
}

Conversion

Rules for Resolution of Overloaded methods
(taking into account all of the various conversion mechanisms)

• execute method whose formal parameters are an exact match for the
actual parameters

• match using standard type promotions (e.g. integer to float)

• match using standard substitution (e.g. child types as parent types)

• match using user-supplied conversions (e.g. one-argument constructor,
type name operator)

• if no match found, or more than one method matches, generate compiler
error

Redefinition
When a child class defines a method with the same name as a method in
the parent class but with a different type signature.

Class Parent {
public void Test (int a) {…}

}

Class Child extends Parent {
public void Test (int a, int b) {…}

}

Child aChild = new Child();
aChild.Test(5);

How is it different from overrriding?
Different type signature in Child class.

Redefinition
Two approaches to resolution
Merge model
• used by Java, C#
• method implementations found in all currently active scopes are merged into one
list and the closest match from this list is executed.
• in the example, parent class method wil be executed.

Hierarchical model
• used by C++
• each currently active scope is examined in turn to find the closest matching
method
• in the example, compilation error in Hierarchical model

Delphi Pascal - can choose which model is used
merge model - if overload modifier is used with child class method.
Hierarchical model - otherwise.

Polyadicity
Polyadic method - method that can take a variable number of arguments.
printf(“%s”, strvar);
printf(“%s, %d”, strvar, intvar);

• Easy to use, difficult to implement
• printf in C and C++; writeln in Pascal; + operator in CLOS

#include <stdarg.h>
int sum (int argcnt, …) // C++ uses a data structure called
{ // variable argument list
va_list ap;
int result = 0;
va_start(ap, argcnt);
while (argcnt > 0) {
result += va_arg(ap, int);
argcnt--;

}
va_end(ap);
return result;

}

Optional Parameters
Another technique for writing Polyadic methods.
• Provide default values for some parameters.
• If values for these parameters are provided then use them, else use the
default values.
• Found in C++ and Delphi Pascal

AmtDue(int fixedCharge);
AmtDue(int fixedCharge, int fines);
AmtDue(int fixedCharge, int fines, int missc);

same as

AmtDue(int fixedCharge, int fines = 0, int missc = 0);

Multi-Methods
Multi-Methods
• combines the concepts of overloading and overriding.
• Method resolution based on the types of all arguments and not just the
type of the receiver.
• Resolved at runtime.

The classes integer and real are derived from the parent class number.
function add (Integer a, Integer b) : Integer { … }
function add (Integer a, Real b) : Real { … }
function add (Real a, Integer b) : Real { … }
function add (Real a, Real b) : Real { … }

Number x = … ; // x and y are assigned some unknown values
Number y = … ;
Real r = 3.14;

Real r2 = add(r, x); // which method to execute
Real r3 = add(x, y); // this is not type safe

Multi-Methods

Double dispatch
• a message can be used to determine the type of a receiver.

• To determine the types of two values, the same message is sent twice,
using each value as receiver in turn.

• Then execute the appropriate method.

Overloading Based on Values

Overloading based on values
• overload a method based on argument values and not just types.
• Occurs only in Lisp-based languages - CLOS, Dylan.
• High cost of method selection algorithm.

Example

function sum(a : integer, b : integer) {return a + b;}
function sum(a : integer = 0, b : integer) {return b;}

The second method will be executed if the first argument is the constant
value zero, otherwise the first method will be executed.

Overriding

A method in child class overrides a method in parent class if they have the
same name and type signature.

Overriding
• classes in which methods are defined must be in a parent-child
relationship.

• Type signatures must match.

• Dynamic binding of messages.

• Runtime mechanism based on the dynamic type of the receiver.

• Contributes to code sharing (non-overriding classes share same
method).

Overriding Notation
C++

class Parent {
public:
virtual int test (int a) { … }

}
class Child : public Parent {
public:
int test (int a) { … }

}

C#

class Parent {
public virtual int test (int a) { … }

}
class Child : Parent {
public override int test (int a) { … }

}

Overriding Notation
Java

class Parent {
public int test (int a) { … }

}
class Child extends Parent {
public int test (int a) { … }

}

Object Pascal

type
Parent = object
function test(int) : integer;

end;
Child = object (Parent)
function test(int) : integer; override;

end;

Overriding
Overriding as Replacement
• child class method totally overwrites parent class method.

• Parent class method not executed at all.

• Smalltalk, C++.

Overriding as Refinement
• Parent class method executed within child class method.

• Behavior of parent class method is preserved and augmented.

• Simula, Beta

Constructors always use the refinement semantics of overriding.

Replacement in SmallTalk
In support of code reuse

<------------------ Code Reuse -----------------------> <----------------------->
Overriden method
as replacement

Person
GenerateReport

Trainee
GenerateReport

Director Manager

Replacement in SmallTalk
In support of code optimization

“class boolean” “class True”
{&} right {&} right

self ifTrue: [right ifTrue: [^true]]. ^ right
^ false

“class False”
{&} right
^ false

Boolean
& right

False
& right

True
& right

Refinement in Beta
• Always code from parent class is executed first.
• When ‘inner’ statement is encountered, code from child class is
executed.
• If parent class has no subclass, then ‘inner’ statement does nothing.

Example

class Parent { class Child extends Parent {
public void printResult () { public void printResult () {
print(‘< Parent Result; ’); print(‘Child Result; ’);
inner; inner;
print(‘>’); }

} }
}

Parent p = new Child();
p.printResult();

< Parent Result; Child Result; >

Simulation of Refinement using Replacement
C++ Object Pascal

void Parent::test () { procedure Parent.test ();
cout << “in parent \n” ; begin

} writeln(“in parent”);
void Child::test () { end;

Parent::test(); procedure Child.test ();
cout << “in child \n”; begin

} inherited test ();
writeln(“in child”);

end;

Java

class Parent {
void test () {System.out.println(“in parent”);}

}
class Child extends Parent {

void test () {
super.test();
System.out.println(“in child”); }

}

Refinement Vs Replacement
Refinement
• Conceptually very elegant mechanism
• Preserves the behavior of parent.

(impossible to write a subclass that is not also a subtype)
• Cannot simulate replacement using refinement.

Replacement
• No guarantee that behavior of parent will be preserved.

(it is possible to write a subclass that is not also a subtype).
• Can be used to support code reuse and code optimization
• Can simulate refinement using replacement.

Wrappers in CLOS
This mechanism can be used to simulate refinement.
A subclass overrides parent method and specifies a wrapping method.
Wrapping method can be
• ‘before’ method
• ‘after’ method
• ‘around’ method

(defclass parent () ())
(defclass child (parent))
(defmethod test ((x parent)) (print “test parent”))
(defmethod atest :after ((x child)) (print “atest child”))
(defmethod btest :before ((x child)) (print “btest child”))
(defmethod rtest :around ((x child))
(list “rtest chld before” (call-next-method) “rtest chld after”))

(defvar aChild (make-instance ‘child))
(atest aChild) “atest child” “test parent”
(atest aChild) “test parent” “btest child”
(atest aChild) “rtest chld before” “test parent” “rtest chld after”

Deferred Methods
• Defined but not implemented in parent class.
• Also known as abstract method (Java) and pure virtual method (C++)
• Associates an activity with an abstraction at a higher level than it
actually is.

• Used to avoid compilation error in statically typed languages.

Shape

virtual Draw() = 0

Square
Draw()

Triangle
Draw()

Circle
Draw()

Deferred Method Example
C++
class Shape {

public:
virtual void Draw () = 0;

}

Java
abstract class Shape {
abstract public void Draw ();

Smalltalk
Draw
“ child class should override this”
^ self subclassResponsibility

(Smalltalk does implement the deferred method in parent class but when
invoked will raise an error)

Shadowing
Child class implementation shadows the parent class implementation of a method.
• As example in C++, when overridden methods are not declared with ‘virtual’
keyword.
• Resolution is at compile time based on static type of the receiver.
class Parent {
public:
void test () { cout << “in Parent” << endl; }

}
class Child : public Parent {
public:
void test () { cout << “in Child” << endl; }

}

Parent *p = new Parent();
p->test(); // in Parent
Child *c new Child();
c->test(); // in Child
p = c;
p->test(); // in Parent

Overriding, Shadowing and Redefinition
Overriding
• Same type signature and method name in both parent and child
classes.
• Method declared with language dependent keywords indicating
overriding.

Shadowing
• Same type signature and method name in both parent and child
classes.
• Method not declared with language dependent keywords indicating
overriding.

Redefinition
• Same method name in both parent and child classes.
• Type signature in child class different from that in parent class.

Covariance and Contravariance

• An overridden method in child class has a different type signature than
that in the parent class.
• Difference in type signature is in moving up or down the type hierarchy.

class Parent {
public void test (Shape s, Square sq)
{ ... }

}

class Child extends Parent {
public void test (Square sq, Shape s)
{ ... }

}

Parent
Test(Shape covar, Square
contravar)

Child
Test(Square covar, Shape
contravar)

Covariance and Contravariance

• Covariant change - when the type moves down the type hierarchy in the
same direction as the child class.

Parent aValue = new Child();
aValue.func(aTriangle, aSquare); // Run-time error

// No compile-time error

• Contravariant change - when the type moves in the direction opposite to
the direction of subclassing.

Parent aValue = new Child();
aValue.func(aSquare, aSquare); // No errors

Covariance and Contravariance
• Covariant change in return type

Shape func () { return new Triangle(); } // In Parent Class
Square func () { return new Square(); } // In Child Class

Parent aValue = new Child();
Shape aShape = aValue.func(); // No compile-time or Run-Time errors

• Contravariant change in return type

Square func () { return new Square(); } // In Parent Class
Shape func () { return new Triangle(); } // In Child Class

Parent aValue = new Child();
Square aSquare = aValue.func(); // No compile-time errors

// Run-Time error

• C++ allows covariant change in return type.
• Eiffel, Sather allows both covariant and contravariant overriding
• Most other languages employ novariance

And Finally...

Java
• ‘final’ keyword applied to functions prohibits overriding.
• ‘final’ keyword applied to classes prohibits subclassing.

C#
• ‘sealed’ keyword applied to classes prohibits subclassing.
• ‘sealed’ keyword cannot be applied to individual functions.

